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Figure 1. An overview of AETHER, trained entirely on synthetic data. The figure highlights its three key capabilities: 4D reconstruction,
action-conditioned 4D prediction, and visual planning, all demonstrated on unseen real-world data. The 4D reconstruction examples are
derived from MovieGen [48] and Veo 2 [62] generated videos, while the action-conditioned prediction uses an observation image from
a university classroom. The visual planning example utilizes observation and goal images from an office building. Better viewed when
zoomed in. Additional visualizations can be found in our website.
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Abstract

The integration of geometric reconstruction and genera-
tive modeling remains a critical challenge in developing
AI systems capable of human-like spatial reasoning. This
paper proposes AETHER, a unified framework that enables
geometry-aware reasoning in world models by jointly op-
timizing three core capabilities: (1) 4D dynamic recon-
struction, (2) action-conditioned video prediction, and (3)
goal-conditioned visual planning. Through task-interleaved
feature learning, AETHER achieves synergistic knowledge
sharing across reconstruction, prediction, and planning ob-
jectives. Building upon video generation models, our frame-
work demonstrates unprecedented synthetic-to-real gener-
alization despite never observing real-world data during
training. Furthermore, our approach achieves zero-shot
generalization in both action following and reconstruction
tasks, thanks to its intrinsic geometric modeling. Remark-
ably, even without real-world data, its reconstruction per-
formance far exceeds that of domain-specific models. Ad-
ditionally, AETHER leverages a geometry-informed action
space to seamlessly translate predictions into actions, en-
abling effective autonomous trajectory planning. We hope
our work inspires the community to explore new frontiers in
physically-reasonable world modeling and its applications.

1. Introduction

“Prediction is not just one of the things your brain does. It is
the primary function of the neocortex.”

— Jeff Hawkins, On Intelligence (2004)

The development of visual intelligence systems capa-
ble of comprehending and forecasting the physical world
remains a cornerstone of AI research. World models
have emerged as a foundational paradigm for building au-
tonomous systems that not only perceive but also anticipate
environmental dynamics to make reasonable actions. At
their core, three capabilities stand out: First, perception
equips the system with the ability to capture the intricate
four-dimensional (4D) changes—integrating spatial and tem-
poral information—that are essential for understanding the
physical world [37, 63, 65, 66, 82, 86]. This continuous
sensing of dynamic cues enables a robust representation of
the environment. Second, prediction leverages this percep-
tual information to forecast how the environment will evolve
under specific actions, thereby providing a foresight into fu-
ture states [3, 24, 28, 32, 35, 60, 77]. Finally, planning uses
these predictive insights to determine the optimal sequence
of actions required to achieve a given goal. Together, these
three aspects empower world models to not only represent
the current state of the environment but also to anticipate
and navigate its future dynamics effectively.

Motivated by these principles, we introduce AETHER, a
unified framework that, for the first time, bridges reconstruc-
tion, prediction, and planning, as shown in Fig. 1. AETHER
leverages pre-trained video generation models [28, 77] and
is further refined via post-training with synthetic 4D data.
Although multiple action modalities exist, ranging from key-
board inputs [2, 11, 15, 46, 79] to human or robotic mo-
tions [16, 84, 89, 90] and point flows [22, 69], we choose
camera pose trajectories as our global action representation.
This choice is particularly effective for ego-view tasks: in
navigation, camera trajectories directly correspond to the
navigation paths, while in robotic manipulation, the move-
ment of an in-hand camera captures the 6D motion of the
end effector. To address the scarcity of 4D data, we utilize
RGB-D synthetic video data and propose a robust camera
pose annotation pipeline to reconstruct full 4D dynamics.

Through a simple training strategy that randomly com-
bines input and output modalities, our method transforms
the base video generation model into a unified, multi-task
world model with three key capabilities: (1) Depth and cam-
era pose estimation from full video sequences; (2) Video
prediction conditioned on an initial observation—with the
option to incorporate a camera trajectory action; and (3)
Goal-conditioned visual planning based on observation–goal
image pairs. We transform depth videos into scale-invariant
normalized disparity representations to meet the tokeniza-
tion requirements of video VAEs. Simultaneously, we en-
code camera trajectories as scale-invariant raymap sequence
representations, structured to align with the spatiotemporal
framework of diffusion transformers (DiTs). By dynami-
cally integrating cross-task and cross-modal conditioning
signals during training, our framework enables synergistic
knowledge transfer across heterogeneous inputs, facilitating
joint optimization for multi-task generative modeling.

In summary, this work introduces AETHER, a unified
world model that integrates reconstruction, prediction, and
planning through multi-task learning on synthetic 4D data.
We propose a robust automatic data annotation pipeline to
obtain accurate 4D geometry knowledge. By combining
geometric reasoning with generative priors, our framework
achieves robust zero-shot transfer to real-world tasks, demon-
strating accuracy comparable to SOTA reconstruction mod-
els while enabling actionable planning capabilities. The
results underscore the value of synergistic 4D modeling for
advancing spatial intelligence in AI systems. We hope that
AETHER will serve as an effective starter framework for
the community to explore post-training world models with
scalable synthetic data.

2. 4D Synthetic Data Annotation Pipeline
For the synthetic data source, we follow DA-V [74] and The-
Matrix [17] to collect large-scale synthetic data with high-
quality video depth data. With high-resolution RGB videos



Figure 2. Some visualization results of data annotated through our pipeline. Better viewed when zoomed in.

Figure 3. Our robust automatic camera annotation pipeline.

and corresponding per-frame depth maps collected, we built
a robust and fully automatic camera annotation pipeline
for both camera extrinsics and intrinsics. As illustrated in
Fig. 3, the pipeline has four stages: (1) object-level dynamic
masking, (2) reconstruction-friendly video slicing, (3) coarse
camera localization and calibration, and (4) tracking-based
camera re�nement with bundle adjustment. We present sev-
eral visualizations of our annotated data in Fig. 2, ranging
from indoor to outdoor scenes, and from static to dynamic
scenarios, demonstrating the robustness and accuracy of our
annotation method.
Dynamic Masking. Distinguishing between dynamic and
static regions is crucial for accurate camera parameters es-
timation. Here, we utilize semantic categories that are po-
tentially dynamic (e.g., cars, people) to segment dynamic
objects. Although this may occasionally misclassify static
objects, such as stationary parked cars, as dynamic, we �nd it
more robust than �ow-based segmentation methods. Speci�-
cally, we use Grounded SAM 2 [50] to ensure the temporal
consistency of dynamic masks over long sequences.
Video Slicing. Video slicing plays a critical role in 3D recon-
struction by serving two key purposes: First, it eliminates
unsuitable video segments (such as scene cuts or motion-
blurred frames) that could compromise reconstruction qual-
ity. Second, it segments long videos into shorter, temporally
coherent clips to enhance processing ef�ciency. The speci�c
criteria for frame removal are as follows: (1)Insuf�cient
Feature Points: We employ the SIFT [39] feature descriptor
to extract keypoints from each frame. Frames exhibiting

insuf�cient SIFT keypoints are discarded to ensure robust
correspondence estimation. Additionally, frames containing
regions with insuf�cient texture due to low illumination are
excluded, as such areas typically exhibit poor feature dis-
criminability and pose challenges for reliable matching. (2)
Large Areas of Dynamic Regions: Frames where dynamic
regions (obtained from dynamic annotation) dominate over
static regions can introduce ambiguity in camera pose esti-
mation. Such frames are �ltered out to ensure robust results.
(3) Large Motion or Inaccurate Correspondence: Using an
off-the-shelf optical �ow estimator, RAFT [61], we estimate
the magnitude of motion. If these magnitudes exceed a pre-
de�ned threshold, we truncate the sequence at the current
frame, retaining all preceding frames as a valid segment.
Similarly, if the ratio of forward-to-backward optical �ow
errors surpasses a threshold value, we truncate the current
frames to ensure temporal coherence.
Coarse Camera Estimation.For each video slice, we �rst
use DroidCalib [25] to perform a coarse estimation of the
camera parameters, leveraging the depth information from
static regions. However, due to the lower input resolution
of the DroidCalib model and the limited accuracy of its
correspondence estimation, a re�nement process is necessary
to obtain precise camera parameters.
Camera Re�nement. We begin camera re�nement by em-
ploying the state-of-the-art tracker, CoTracker3 [33], to
capture accurate long-term correspondences across the en-
tire slice. SIFT [39] and SuperPoint [12] feature points
are extracted from static regions, and then tracked to form
correspondences. Subsequently, bundle adjustment is per-
formed on all frames to minimize the accumulated reprojec-
tion error of all correspondences. With access to high-quality
dense depth, we apply forward-backward reprojection to es-
timate and minimize errors in 3D space [8], which improves
per-frame camera accuracy while preserving inter-frame ge-
ometric consistency. Speci�cally, we solve the nonlinear
optimization problem by Ceres Solver [1], and the Cauchy
loss function is applied to measure correspondence residuals,
which accounts for the problem's sparsity.
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